Intersection Theory Class 19 Ravi

نویسنده

  • RAVI VAKIL
چکیده

We defined the Grothendieck groups KX and K0X. They are vector bundles, respectively coherent sheaves, modulo the relation [E] = [E ] + [E ]. We have a pullback on K: f : KX → KY. KX is a ring: [E] · [F] = [E ⊗ F]. We have a pushforward on K0: f∗[F ] = ∑ i≥0(−1) [Rf∗F ]. We obviously have a homomorphism KX → K0X. K0X is aK X-module: KX⊗K0X → X is given by [E] · [F ] = [E⊗ F ]. Unproved fact: If X is nonsingular and projective, the map KX → K0X is an isomorphism. (Reason: If X is nonsingular, then F has a finite resolution by locally free sheaves.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection Theory Class 16 Ravi Vakil

We’ve covered a lot of ground so far. I want to remind you that we’ve essentially defined a very few things, and spent all our energy on showing that they behave well with respect to each other. In particular: proper pushforward, flat pullback, c·, s·, s·(X, Y). Gysin pullback for divisors; intersecting with pseudo-divisors. Gysin pullback for 0sections of vector bundles. We know how to calcula...

متن کامل

Intersection Theory Class 17

The cone of X in Y is in fact a vector bundle (as X ↪→ Y is a local complete intersection); call itNXY. The cone CWY toW in Y may be quite nasty; but we saw that CWY ↪→ g ∗NXY. Then we define X · V = s∗[CWV] where s : W → g∗NXY is the zero-section. (Recall that the Gysin pullback lets us map classes in a vector bundle to classes in the base, dropping the dimension by the rank. Algebraic black b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004